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Abstract The Superstable Weakly Imperfect Bose-Gas (Sup-WIBG) was originally pro-
posed to solve some inconsistencies of the Bogoliubov theory based on the WIBG. The
grand-canonical thermodynamics of the Sup-WIBG has been recently studied in details but
only out of the point of the (first order) phase transition. The present paper closes this gap.
The key technical tools are the Large Deviations (LD) formalism and in particular the analy-
sis of the Kac distribution function. It turns out that the condensate fraction discontinuity as
a function of the chemical potential (that occurs at the phase transition point) disappears if
one considers it as a function of the total particle density. We prove that at this point the
equilibrium state of the Sup-WIBG is a mixture of two (low- and high-density) pure phases
related to two critical particle densities. Non-zero Bose-Einstein condensate starts at the
smaller critical density and continuously grows (for a constant chemical potential) until the
second critical density. For higher particle densities, the Bose condensate fraction as well as
the chemical potential both increase monotonously.

Keywords Superstable Weakly Imperfect Bose-Gas · Bose-Einstein condensation · Kac
distribution · Large deviations · Equivalence of ensembles

1 Introduction

The proof of the Large Deviation Principle (LDP) for the total particle density distribution
(the Kac distribution) in the Perfect- and in the Mean-Field boson gases goes back to [1]. In
recent papers [2, 3], the authors addressed to the proof of the LDP for the particle density in
sub-domains both for the perfect and interacting rarified quantum gases (Fermi or Bose).
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In the present paper we extend the proof of the LDP for the Kac distribution to the
Superstable Weakly Imperfect Bose-Gas (Sup-WIBG) [4], known also as the Superstable
Bogoliubov model [5, 6]. The study of this model out of the phase transition regime started
in [4, 7] was recently completed in [8–11].

This model results from a weaker (comparing to the Bogoliubov WIBG) truncation of the
full interacting Hamiltonian and allows to solve some inconsistencies between the grand-
canonical WIBG description and the Bogoliubov theory of superfluidity, see [6] for discus-
sion. For example the Sup-WIBG exists for any values of the chemical potential μ ∈ R,
whereas the WIBG exists only for its non-positive values μ ≤ 0. On the thermodynamic
level the Sup-WIBG was rigorously solved in the grand-canonical ensemble by [9, 11]. It
turns out that the Sup-WIBG (similar to the WIBG) manifests a phase transition with a
nonconventional (or dynamical) zero-mode Bose condensation, which is entirely due to the
particle interaction [5, 6]. In WIBG this transition occurs at low temperatures β−1 and for a
sufficiently strong (non-diagonal) interaction at a negative critical chemical potential μc(β),
whereas in Sup-WIBG it takes place for any value of this interaction as soon as the chemical
potential is large enough [9, 11].

This and other differences as well as similarities are discussed below in Sect. 2.
Here we only notice that this interaction leads also to the phenomenon of the condensate

depletion: even at zero temperature, i.e. for an inverse temperature β → ∞, only a frac-
tion of the total particle density stays in the zero-mode condensate. This phenomenon is
known since the pioneer Bogoliubov’s paper [12] and it makes a difference with perfect or
mean-field interacting boson gases. Another unusual property of Sup-WIBG is that (simi-
lar to WIBG) the phase transition mentioned above occurs in the grand-canonical ensemble
for increasing chemical potential μ with a discontinuity of the total particle density ρ(β,μ)

from ρ− := ρ(β,μc(β)−0) to ρ+ := ρ(β,μc(β)+0) > ρ(β,μc(β)−0) for β < ∞. More-
over, this is related to a strictly positive jump of the condensate density as a function of the
chemical potential at the critical value μc := μc(β).

The aim of this paper is to study the coexistence of the low- and high-density phases in the
Sup-WIBG. (In fact, it was not carefully done even for the WIBG in [5, 6].) In particular, we
solve the problem of the value of the Bose condensate density when ρ ∈ [ρ−, ρ+]. Several
scenarios are possible à priori. For example, since this phase transition is characterized
by the appearance of the nonconventional Bose condensation, which is due to the particle
interaction, it might be that there is no condensate at all in the whole domain ρ ∈ (ρ−, ρ+),
i.e. the condensate density jumps from zero to a strictly positive value for ρ > ρ+. Here
we show that this discontinuity is of a more standard nature. In fact it disappears if the
condensate density is considered as a function of the total particle density ρ (canonical
ensemble). In particular, at the point of the phase coexistence, the quantum Gibbs state of the
Sup-WIBG (or WIBG) model is a linear convex combination of two of phases corresponding
to ρ−- and ρ+-grand-canonical equilibrium states. Moreover, the last one is an integral over
pure states enumerated by the condensate gauge parameter. A similar observation was made
for a particular example of a “non-convex” Mean-Field (MF) interaction in [1], using the
large deviations technique description of the total particle density by the Kac distribution [1].

In the present paper we follow this strategy for the Sup-WIBG to verify the LDP for
the Bose condensate density distribution as well as for the Kac distribution for all densities
including the point of the phase transition. We show that the discontinuity of the zero-mode
Bose condensate and its depletion, visible as a function of the chemical potential μ, appears
differently, if it is considered as a function of the total particle density. For example, the Bose
condensate density is a continuously increasing function of ρ ≥ 0. When the particle density
ρ exceeds the first critical value ρ−, the Bose condensate density continuously grows but the
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corresponding chemical potential μ(β,ρ) stays constant: μ(β,ρ) = μc(β) for ρ ∈ [ρ−, ρ+].
For higher particle densities: ρ > ρ+, the Bose condensate as well as the chemical potential
μ(β,ρ) > μc both increase monotonously. Here μ(β,ρ) is the solution of the total particle
density equation in the grand-canonical state fixed by (β,μ), see Sect. 2.2.

In Sect. 2 we briefly recall the results on the grand-canonical thermodynamics of the
Sup-WIBG for a particle density ρ, i.e. for the chemical potential μ(β,ρ). Our main results
are formulated in Sect. 3 and the proofs are collected in Sect. 4. For the reader convenience,
we quote in Appendix some main definitions and technical results related to LDP.

Recall that throughout this paper β > 0 denotes the inverse temperature, whereas μ and
ρ > 0 are respectively the chemical potential and the total particle density. Also, we reserve
the notation 〈−〉H�

(β,μ) for the (finite-volume) grand-canonical Gibbs state corresponding
to the Hamiltonian H�.

Notice that our analysis essentially concerns the case with a fixed value of β > 0. Hence,
for a short-hand we omit this parameter as argument in notations and definitions, if it is
obviously clear.

2 Superstable Weakly Imperfect Bose Gas

2.1 The Hamiltonian

Let a homogeneous gas of n spinless bosons with mass m be enclosed in a cubic box � ⊂
R

3 of volume V := |�| with periodic boundary conditions for one-particle Schrödinger
operator. Then the one-particle energy spectrum is εk := �

2k2/2m with �∗ := 2πZ
3/V 1/3

as the set of wave vectors k. We consider a system with interaction defined by a two-body
potential ϕ(x) ≡ ϕ(‖x‖) such that:

(A) ϕ(x) ∈ L1(R3) (absolute integrability).
(B) Its Fourier transformation ϕ̂(‖k‖) =: λk satisfies: λk=0 ≥ 0 and 0 ≤ λk ≤ λ0 for k ∈ R

3.

The Sup-WIBG Hamiltonian (also known as the AVZ Hamiltonian [9] or the Superstable
Bogoliubov Hamiltonian [8]), was proposed for the first time in [4]:

H SB
�,λ0

:= HB
�,0 + UMF

�,λ0
. (2.1)

Here HB
�,0 := HB

�,λ0=0 is the Hamiltonian of the WIBG without the zero-mode interaction
term

UBMF
� := λ0

2V
a∗2

0 a2
0 + λ0

V
a∗

0a0

∑

k∈�∗\{0}
a∗

k ak, (2.2)

see e.g. [6]. More precisely, the Hamiltonian

HB
�,0 := T� + UD

�,0 + UND
� , (2.3)

with the kinetic-energy term T� :=∑k∈�∗ εka
∗
k ak (note that ε0 = 0) and with (truncated:

λ0 = 0) diagonal UD
�,0 and non-diagonal UND

� Bogoliubov interactions [6]:

UD
�,0 :=

∑

k∈�∗\{0}

λk

2

a∗
0a0

V
(a∗

k ak + a∗
−ka−k),
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UND
� :=

∑

k∈�∗\{0}

λk

2

(

a∗
k a

∗
−k

a2
0

V
+ a∗2

0

V
aka−k

)

.

The pressure and the free-energy density of Sup-WIBG are calculated in the thermodynamic
limit in [10, 11]. The repulsive interaction UMF

� , which involves all modes, corresponds to
the “forward scattering” interaction:

UMF
�,λ0

:= λ0

2V

∑

k1,k2∈�∗
a∗

k1
a∗

k2
ak2ak1 = λ0

2V

(

N2
� − N�

)

, (2.4)

with the particle-number operator:

N� :=
∑

k∈�∗
a∗

k ak.

Here a∗
k := (a(ψk))

∗ and ak := a(ψk) are the usual boson creation/annihilation operators in
the one-particle eigenfunctions for periodic boundary conditions:

{

ψk(x) := eikx/
√

V
}

k∈�∗ ⊂ L2
(

�n=1
)

.

These operators act in the boson Fock space

F B
� :=

∞
⊕

n=0

H(n)
B , with H(n)

B := (L2 (�n)
)

symm
, H(0)

B := C, (2.5)

where {H(n)
B }∞

n=1 are symmetrized n-particle Hilbert spaces. By assumptions (A)–(B) the
interaction (2.4) ensures the superstability of H SB

�,λ0>0, see [4, 14].
Notice that for general values of λ > 0 the interaction UMF

�,λ (2.4) is also known as the
Mean-Field (MF) boson interaction, see e.g. [1].

Below we consider a generalized version H SB
�,λ (2.1) of the Sup-WIBG. One of the moti-

vation for this is the (essential) independence of the Sup-WIBG thermodynamic properties
of the parameter λ > 0, see [10, 11]. Recall that the WIBG Hamiltonian retains only a part
UBMF

�,λ0
(2.2) of the total “forward scattering” interaction (2.4) for λ = λ0. Then the corre-

sponding Hamiltonian of the WIBG (cf. (2.3) and [6]) can be considered as a truncation of
the Sup-WIBG (2.1):

H WIBG
�,λ0

:= HB
�,0 + UBMF

�,λ0
. (2.6)

Remark 2.1 Let Hk=0,� ⊂ L2(�) be one-dimensional zero-mode subspace spanned by the
vector ψk=0(x) = 1/

√
V . Then F B

� ≈ F0� ⊗ F ′
� where F0� and F ′

� denote the boson Fock
spaces constructed on the space H0,� and on its orthogonal complement H⊥

0,� respectively.

2.2 Grand-Canonical Thermodynamics for a Fixed Particle Density

The grand-canonical thermodynamics of the Sup-WIBG is based on two ingredients: the
c-number Bogoliubov substitution a0/

√
V → c ∈ C proved in [15] (then justified in a great

generality in [16]) and the proof [10, 11] of commutation of sup and inf based on particular
convexity-concavity properties of the corresponding (y,α)-function defined in (4.9).
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Before to formulate these results, we first define the Bogoliubov approximation (or
c-number Bogoliubov substitution) of the Hamiltonian HB

�,0 − α(N� − a∗
0a0), which, com-

bined with the gauge transformation ak → ei2 arg cak , equals

HB
�,0 (α, x) :=

∑

k∈�∗\{0}

{

(εk − α)a∗
k ak + xλk

2

(

a∗
k ak + a∗

−ka−k

)

+ xλk

2

(

a∗
k a

∗
−k + aka−k

)

}

. (2.7)

Here x = |c|2 ≥ 0 and α ≤ 0 are still free parameters. Actually, this operator is used as a
trial Hamiltonian via its infinite-volume pressure

pB
0 (β,α, x) := lim

�

1

βV
ln TrF ′

�

{

e
−β(HB

�,0(α,x)−αxV )
}

. (2.8)

In particular, by variational problem for trail parameters (α, x), it leads to the infinite-volume
Sup-WIBG pressure:

Proposition 2.2 [10, 11] The thermodynamic limit of the grand-canonical pressure associ-
ated with the Sup-WIBG model H SB

�,λ is equal to

pSB(β,μ) = sup
x≥0

{

inf
α≤0

{

pB
0 (β,α, x) + (μ − α)2

2λ

}}

= inf
α≤0

{

pB
0 (β,α, xμ(β)) + (μ − α)2

2λ

}

, (2.9)

for any chemical potential μ and any inverse temperature β > 0.

Notice that to obtain the last line and the definition of xμ(β) in the variational problem
(2.9) one uses the following argument. Let α̂(β,μ,x) be a minimizer in the first line of (2.9):

pSB(β,μ) = sup
x≥0

{

pB
0 (β, α̂(β,μ,x), x) + (μ − α̂(β,μ,x))2

2λ

}

.

If now xμ := xμ(β) is a maximizer of this last variational problem, then by definition of α̂

one gets the identity:

pSB(β,μ) = pB
0 (β, α̂(β,μ,xμ), xμ) + (μ − α̂(β,μ,xμ))2

2λ

= inf
α≤0

{

pB
0 (β,α, xμ(β)) + (μ − α)2

2λ

}

,

which proves (2.9). Notice that maximizer xμ might be a discontinuous function of μ, see
Proposition 2.6. Below we put αμ(β) := α̂(β,μ,xμ) and use (2.9) to express the LDP for
the condensate distribution.

By this proposition, one obtains the behaviour of the pressure pSB(β,μ) as well as the
grand-canonical total particle density ρ(β,μ) as a function of μ:
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Proposition 2.3 [10, 11] Let λ > 0 and β > 0. Then there is a critical value of the chemical
potential μc(β) such that the pressure (2.9) has a cusp at μ = μc(β):

ρ−(β) := ∂μpSB(β,μc(β) − 0) ≤ ∂μpSB(β,μc(β) + 0) =: ρ+(β). (2.10)

Therefore, the grand-canonical total particle density ρ(β,μ) = ∂μpSB(β,μ) has a jump

�ρ(β,μc(β)) := ρ+(β) − ρ−(β) (2.11)

at the point μ = μc(β).

Remark 2.4 Notice that the Sup-WIBG model has no sense for λ < 0, since the grand par-
tition function diverges in this case. It is also difficult to compare Sup-WIBG with WIBG.
For the latter model: λ ≡ λ0 ≥ λk is compulsory (2.6), and this model exists only for μ ≤ 0.
On the other hand, under certain conditions the WIBG also manifests a phase transition with
a jump of the total particle density, which is related to the jump of the nonconventional con-
densation, as in Fig. 1. To make a contact between these two models let us introduce the
parameter

M(λ) := λ − 1

2(2π)3

∫

d3k
λ2

k

εk

. (2.12)

Here the second term corresponds to effective attractive interaction [5, 6] of bosons in the
zero-mode due to non-diagonal interaction UND

� (2.3). The condition for a jump in the WIBG
(condition (C)) is M(λ0) < 0, whereas for M(λ0) ≥ 0 this model is equivalent to a Perfect
Bose Gas (PBG). Notice that M(λ0) can change from positif to negative values for two-
body potentials ϕ with non-zero radius (see conditions (A) and (B) in Sect. 2.1) by a simple
scaling: ϕ �→ αϕ with increasing α > 0, see [5, 6]. In contrast to WIBG the Sup-WIBG
model manifests a phase transition with a jump of the total particle density for any λ > 0.
If M(λ) ≥ 0, the value of the jump is independent of λ > 0 and converges to zero when
β → ∞, whereas for M(λ) < 0 it is strictly decreasing with λ > 0 [11].

Below we consider the Sup-WIBG in the grand-canonical ensemble (β,μ) defined by a
given total particle density ρ, i.e. by the chemical potential μ�(β,ρ), which for any finite
domain � is a solution of the equation

ρ =
〈

N�

V

〉

H SB
�,λ

(β,μ). (2.13)

Since the right-hand side of (2.13) is a monotonously increasing function of μ [9], the
solution μ�(β,ρ) is unique for any ρ > 0. In the thermodynamic limit, μ�(β,ρ) converges
to

μρ(β) := lim
�

μ�(β,ρ) ∈ R, (2.14)

with the following properties:

Proposition 2.5 [9–11] The solution μρ(β) is a strictly increasing function of ρ except for
some interval [ρ−(β), ρ+(β)], where it rests constant:

μc(β) := μρ(β), for ρ ∈ [ρ−(β), ρ+(β)]. (2.15)

The interval in (2.15) is non-zero as soon as λ > 0, but gets smaller as β → ∞, see Fig. 1.
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Fig. 1 Illustration of the Bose condensate density, xρ as a function of the total particle density ρ > 0, and
xμ as a function of the chemical potential μ ∈ R. The dashed line “closing” continuously the gap between
xρ− = 0 and xρ+ is an illustration of the condensation xρ in the mixture of the extreme phases correspond-
ing the total particle density ρ ∈ [ρ−, ρ+] that we study in the present paper. Here each of the asymptotic
straight lines are: xρ = ρ, or xμ = μ/λ. They correspond to the limits: xρ→∞ , or xμ→∞ , when the Bose
condensation reachs the saturated value

The next statements make precise the relation between the first-order transition jump of
the density and a jump of the nonconventional zero-mode condensation which in Sup-WIBG
is due to the same mechanism of non-diagonal interaction UND

� (see (2.3)) as in the case of
the WIBG.

Proposition 2.6 [9–11] Let λ > 0 and β > 0. Then one obtains that:
(a) For μ > μc(β) the Sup-WIBG manifests a nonconventional zero-mode Bose condensa-
tion:

xμ = lim
�

〈

a∗
0a0

V

〉

H SB
�,λ

(β,μ) =
{= 0 for μ < μc(β),

> 0 for μ > μc(β),
(2.16)

which coincides with the corresponding solution of the variational problem (2.9). By the
same reason as in the case of the WIBG (effective attraction of the zero-mode bosons, see
[5, 6]) the condensation (2.16) appears with a jump from zero to the non-zero value:

xμc(β)+0 − xμc(β)−0 = xμc(β)+0 > 0. (2.17)

(b) By virtue of Proposition 2.5 and by (2.16) one also finds the behaviour of the noncon-
ventional condensation as a function of the total density:

xρ := lim
�

〈

a∗
0a0

V

〉

H SB
�,λ

(β,μ�(β,ρ)) =
{= 0 for ρ < ρ−(β),

> 0 for ρ > ρ+(β),
(2.18)

i.e. by (2.15) the value of xρ+ := xρ+(β)+0 coincides with xμc(β)+0 in (2.17).
(c) From the variational problem (2.9) we obtain:

pSB(β,μ) = pB
0 (β,αμ, xμ)) + (μ − αμ)2

2λ
, (2.19)
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with maximizer xμ = xμ(β) and with minimizer αμ := αμ(β). Combining (2.14) with (b) we
get that the zero-mode condensate density (2.18) for μρ(β) �= μc(β) is equal to

xρ := xμρ(β)(β) ≡ xμρ (β). (2.20)

At critical point, μρ(β) = μc(β), the variational problem (2.9) has two solutions:
(0, αμc(β)−0) and (xρ+ = xμc(β)+0, αμc(β)+0).
(d) By (2.8), (2.9) and (2.13), (2.19) one obtains [9–11] the relation:

ρ(β,μ) = lim
�

〈

N�

V

〉

H SB
�,λ

(β,μ) = μ − αμ

λ
. (2.21)

Since for any density ρ we have the identity ρ = ρ(β,μρ(β)), the pressure as function of
particle density pSB(β,ρ) is the Legendre transformation of pSB(β,μ). By virtue of (2.19)
and (2.21) we get that

pSB(β,ρ) := pSB(β,μρ(β)) = pB
0 (β,αρ, xρ) + λ

2
ρ2 (2.22)

is a convex function of ρ, where we put αρ := αμρ(β)(β).

Remark 2.7 These propositions indicate that the Sup-WIBG manifests a first-order phase
transition due to the jump of the zero-mode Bose condensate density. Illustrations of the
behaviour of the Bose condensate density xρ as a function of ρ, and condensate density xμ

as a function of μ, are presented in Fig. 1. Notice that it is similar to the phase transition in
WIBG, but with two essential differences:
(a) Since λ > 0, the range of the μ for the Sup-WIBG is R, whereas the WIBG exists only
for μ ≤ 0. The latter implies coexistence of the saturated nonconventional and conventional
Bose condensations at the extremal point μ = 0. Since for the Sup-WIBG the value of μ is
unbounded this phenomenon does not appear for the Sup-WIBG.
(b) Since λ > 0, the canonical and grand canonical ensembles for the Sup-WIBG are
(strongly) equivalent. By virtue of (2.1) and (2.4) with λ0 = λ, the canonical Gibbs state
for the Sup-WIBG are defined only by the Hamiltonian HB

�,0, i.e. by the WIBG without the
zero-mode interaction term UBMF

� , i.e. for λ0 = 0, see (2.3). The WIBG free-energy density
f WIBG

λ0
(β,ρ) as a function of ρ is convex for M(λ0) ≥ 0 and non-convex for M(λ0) < 0. In

the last case one gets the first order transition at some critical chemical potential μWIBG
c (β)

with a jump of the particle density corresponding to the nonconventional Bose condensation
jump at this point [5, 6]. Since for HB

�,0 we always have M(λ0 = 0) < 0, the Sup-WIBG
free-energy density f SB

λ=0(β,ρ) is non-convex, as a function of ρ. Moreover, by [9–11] the
“stabilized” free-energy density: f SB

λ (β,ρ) = f SB
λ=0(β,ρ) + λρ2/2 rests non-convex for any

λ > 0. Hence, in contrast to WIBG the Sup-WIBG always manifests the first-order phase
transition at the chemical potential μc(β), see Proposition 2.3.

3 LDP for the Zero-Mode Bose Condensate Density

To define the (finite volume) distribution function D�,ρ for the zero-mode Bose condensate
density, we first recall the definition of the Bogoliubov approximation due to Ginibre [15],
see also a more recent paper [16].
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For any complex c ∈ C, a coherent vector |c〉 in the zero-mode boson Fock space F0�

(see Remark 2.1) satisfies a0|c〉 = c
√

V |c〉. In fact, if 0 is the vacuum of F B
� , then |c〉 :=

exp{−V |c|2/2 + c
√

V a∗
0}0 for any c ∈ C. Then the Bogoliubov approximation of the self-

adjoint operator A with domain in F B
� ≈ F0� ⊗ F ′

� is the operator A(c) defined in the boson
Fock space F ′

� of non-zero modes by its sesquilinear form:

ac[ψ ′
1,ψ

′
2] := 〈ψ ′

1

∣

∣A (c)
∣

∣ψ ′
2

〉 := 〈c ⊗ ψ ′
1

∣

∣A
∣

∣c ⊗ ψ ′
2

〉

, (3.1)

for |c ⊗ ψ ′
1,2〉 in the form-domain of A.

For any chemical potential μ ∈ R the (finite volume) grand-canonical pressure associated
with H SB

�,λ is equal to

pSB
� (β,μ) := 1

βV
ln TrF B

�

{

e
−β(H SB

�,λ−μN�)
}

. (3.2)

Here we put W�,μ := e
−β(H SB

�,λ−μN�) for the grand-canonical statistical operator (density
matrix) generated by H SB

�,λ.
Using completeness of the family of coherent vectors {|c〉}c∈C, one can rewrite the trace

Tr in (3.2) as

pSB
� (β,μ) = 1

βV
ln
∫

C

d2c TrF ′
�

{

W�,μ (c)
}

= 1

βV
ln
∫

C

d2c eβVpSB
� (β,μ,c), (3.3)

where d2c := V π−1dc1dc2 with c := c1 + ic2, and W�,μ(c) results from the Bogoliubov
approximation (3.1) of the statistical operator W�,μ. Let

pSB
� (β,μ, c) := 1

βV
ln TrF ′

�

{

W�,μ (c)
}

(3.4)

be the pressure defined by the partial trace over subspace F ′
�. Then for any μ, the grand-

canonical condensate-density distribution function D�,μ is defined by

D�,μ [A] := e−βVpSB
� (β,μ)

∫

A
d2c eβVpSB

� (β,μ,c), (3.5)

on the Borel subsets A ⊂ C.
In Sect. 4 we give a proof of the Large Deviation Principle (LDP) for the canonical

condensate distribution D�,ρ := D�,μ�(β,ρ), i.e. when the total particle density ρ > 0 is fixed.

Theorem 3.1 (LDP for canonical condensate distribution) For any ρ > 0 the sequence of
probability measures {D�,ρ}� satisfies the LDP (for the increasing sequence βV → ∞)
with the rate function (cf. with variational problem (2.9)):

Iρ (x) : = sup
x≥0

{

inf
α≤0

{

pB
0 (β,α, x) + (μρ − α)2

2λ

}}

− inf
α≤0

{

pB
0 (β,α, x) + (μρ − α)2

2λ

}

, (3.6)
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where x = |c|2 ≥ 0, the pressure pB
0 is defined by (2.8) and the chemical potential for a

given density μρ is equal to (2.14).

This theorem shows in particular that the probability to observe the zero-mode conden-
sate density n0/V ∈ A of bosons enclosed in � for a fixed particle density ρ > 0 decreases
exponentially with the volume V = |�|, if

inf
n0/V ∈A

|xρ − n0/V | > 0.

Behaviour of the function xρ is described by (3.9).
Our next step is to evaluate the limiting probability measure, in particular at the point of

the phase transition defined for a particle density ρ ∈ [ρ−, ρ+]. Recall that by Proposition 2.6
the Bose condensate density xρ converges to 0, when ρ → ρ− − 0 and to a strictly positive
value xρ+ , when ρ → ρ+ + 0.

Theorem 3.2 (Limit of distributions D�,ρ /∈[ρ−,ρ+]) For ρ /∈ [ρ−, ρ+] and � ↑ R
3 the se-

quence {D�,ρ}� converges weakly on the set of probability measures M1(C) to the uniform
singular measure with density:

Dρ[dc1 dc2] := lim
�

D�,ρ[dc1 dc2]

=
∫ 2π

0

dθ

2π
δ(c1 − √

xρ cos θ)δ(c2 − √
xρ sin θ)dc1 dc2, (3.7)

with support on the circle {c ∈ C : |c| = x1/2
ρ }, where xρ is the Bose condensate density

determined by Proposition 2.6(b).

Notice that for β → +∞ both ρ−(β) and ρ+(β) could converge to zero, depending on
the interaction potential and M(λ), see Remark 2.4. In contrast, at finite temperature, one
always has ρ+ > ρ− and the limit of {D�,ρ}� for ρ ∈ [ρ−, ρ+] is one of the main result of
the present paper.

Theorem 3.3 (Limit of distributions D�,ρ∈[ρ−,ρ+]) Let β > 0, i.e. ρ+(β) > ρ−(β). For � ↑
R

3, the distribution D�,ρ of the condensate converges weakly in M1(C) towards a convex
linear combination of singular measures with densities:

Dρ[dc1 dc2] := lim
�

D�,ρ[dc1 dc2]

= (1 − κρ

)

δ(c1)δ(c2)dc1 dc2

+ κρ

∫ 2π

0

dθ

2π
δ(c1 − √

xρ+ cos θ)δ(c2 − √
xρ+ sin θ)dc1 dc2, (3.8)

where κρ := (ρ − ρ−)/(ρ+ − ρ−) for any ρ ∈ [ρ−, ρ+].

Note that κρ : [ρ−, ρ+] �→ [0,1] is a strictly increasing and continuous function. This
result gives an evidence that at the point of the phase transition the corresponding Gibbs
state is not a pure phase anymore, but a convex combination of two phases [13], see also
example in Sect. 4 of [1]. One of them corresponds to the limiting Gibbs state 〈−〉(β,ρ−(β))

with xρ−(β) = 0, whereas in the state 〈−〉(β,ρ+(β)) the condensate density xρ+(β) > 0, see
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Proposition 2.6(b). Notice that the state with condensate is not pure: it is a linear combination
(integral) of pure phases fixed by the gauge parameter θ of condensed states, see (3.8).

Finally, integrating the probability density Dρ[c] with function ϕ(c) = |c|2, we obtain the
Bose condensate density (2.18) for all values of ρ, including in the domain of coexistence
of two phases when ρ ∈ [ρ−, ρ+].

Corollary 3.4 (Zero-mode condensate density) The zero-mode Bose condensate density xρ

as a function of the total particle density ρ has the form:

xρ = lim
�

〈

a∗
0a0

V

〉

H SB
�,λ

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for ρ ≤ ρ−,
ρ − ρ−
ρ+ − ρ−

xρ+ for ρ ∈ [ρ−, ρ+],
xρ > 0 for ρ ≥ ρ+.

(3.9)

Notice that it is continuous as a function of ρ > 0 and is linearly increasing in domain:
ρ ∈ [ρ−, ρ+], see Fig. 1.

As a function of the density ρ > 0 in the grand-canonical ensemble, the phase transition
is of order two if ρ+ > ρ− whereas it is of order one as a function of the chemical potential.
In particular, take ρ < ρ−, then the system behaves as the so-called Mean-Field Bose Gas,
i.e. the model defined by the Hamiltonian

H MF
� :=

∑

k∈�∗
εka

∗
k ak + λ

2V

(

N2
� − N�

)

,

with no Bose condensation. Increase now the particle density. The chemical potential μρ ≤
μc(β) normally grows until we reach ρ = ρ−. By further increasing of the density, the
Bose condensation sets in and the condensate density reaches continuously the value xρ+
for ρ = ρ+. Meanwhile, the corresponding chemical potential μρ stays constant at the phase
transition: μρ = μc for ρ ∈ [ρ−, ρ+]. Finally, at higher particle densities, i.e. for ρ > ρ+, the
Bose condensate as well as the chemical potential μρ > μc(β) both increase.

4 Proofs: LDP for a Generalized Kac Distribution

In this section we prove the LDP for condensate- and “out of condensate” particles distribu-
tions of the Sup-WIBG in the grand-canonical ensemble for any fixed total particle density
ρ > 0, i.e. for chemical potentials {μ�(β,ρ)}�, see (2.13) and (2.14). The corresponding
finite-volume distribution K�,μ[·, · ] is a generalized Kac distribution [1]: it is a joint dis-
tribution of particles outside the condensate and the condensed particles, cf. (3.5). The cor-
responding statement is expressed by Theorem 4.2, which is therefore a generalization of
Theorem 3.1. To take into account the phase transition at μc(β) and the mixture of two
extreme phases, we use a generalized quasi-average procedure [1] by taking a “perturbed”
critical chemical potential:

μ̃c(�) := μc(β) + γ

βV
+ o

(

1

βV

)

for γ ∈ R. (4.1)

We analyze the thermodynamic limit of the generalized Kac distribution at the sequence of
these chemical potentials, see Theorem 4.4.
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As a consequence, the generalized quasi-average procedure (4.1) gives the finite volume
asymptotics of the chemical potential μ�(β,ρ), which is a solution of (2.13) at the phase
transition point, i.e. for ρ ∈ [ρ−, ρ+] when ρ+ > ρ−. Indeed, by applying the distribution
K�,μ to an appropriate function, we obtain the mean particle density at a chemical potential
μ̃c(�) for any γ ∈ R. This procedure will then imply that for ρ ∈ [ρ−, ρ+] there is a unique
and explicit γρ such that μ�(β,ρ) = μ̃c(�) with |γρ | = o(V ), see Sect. 4.2.

Meanwhile, the LDP for K�,μ given by Theorem 4.2 directly implies Theorem 3.1 for
any ρ > 0. Applying the result of Theorem 4.4 to the chemical potential μ�(β,ρ) = μ̃c(�)

for γ = γρ , we also get Theorem 3.3 for ρ ∈ [ρ−, ρ+]. If ρ /∈ [ρ−, ρ+], the generalized
quasi-average procedure is not necessary and Theorem 3.2 is a simple consequence of The-
orem 3.1. We give now the promised proofs.

4.1 Large Deviations for Generalized Kac Distribution

In the grand-canonical ensemble the particle number density is a random variable defined
by the probability measure, known as the Kac distribution [1]. We introduce here a general-
ized Kac distribution associated with the condensate- and out of the condensate (depletion)
particle densities.

Definition 4.1 The generalized Kac distribution is defined on the Borel subsets A × B,
where A ⊂ C and B ⊂ R+, by integration over the zero-mode coherent states and over the
particle counting measure ν�:

K�,μ [A × B]

:= e−βVpSB
� (β,μ)

∫

A
d2c

∫

B
ν� (dy) eβV [μ(y+|c|2)−f SB

� (β,y,c)]. (4.2)

Here the counting measure

ν� (dy) :=
∞
∑

n=1

δ
([|yV |]− n

)

dy, (4.3)

where [|a|] stands for integer part of a ≥ 0, and the (partial) canonical free-energy

f SB
� (β, y, c) := − 1

βV
ln TrH[yV ]

B,k �=0

{

[

W�,0(c)
][|yV |]
k �=0

}

(4.4)

corresponds to the Bogoliubov approximation W�,μ=0(c) (3.1) of the statistical operator
W�,μ, cf. (3.4), restricted to the non-zero mode of the [|yV |]-particle boson Fock subspace
H[|yV |]

B,k �=0.

Our first result concerns the large deviations for the generalized Kac distributions
K�,μ[ · ] in the grand-canonical ensemble.

Theorem 4.2 (LDP for generalized Kac distributions) In the grand-canonical ensemble
(β,μ) the family of Kac distributions {K�,μ}� satisfies the LDP for the increasing sequence
βV with the rate function:

Kμ (x, y) := pSB (β,μ) + f B
0 (β, y, x) + λ

2
(y + x)2 − μ(y + x) , (4.5)
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see Appendix. Here x := |c|2 ≥ 0, y ≥ 0 and

f B
0 (β, y, x) := sup

α≤0

{

α(y + x) − pB
0 (β,α, x)

}

(4.6)

is the Legendre-Fenchel transformation of the trial pressure pB
0 (β,α, x) defined in (2.8).

Proof Notice that the pressure pB
0 (β,α, x) is defined by bilinear Hamiltonian (2.7) and thus

it can be calculated explicitly for any α ≤ 0:

pB
0 (β,α, x) = αx − 1

β (2π)3

∫

R3
d3k ln
(

1 − e−βEk(α,x)
)

+ 1

2 (2π)3

∫

R3
d3k(εk − α + xλk − Ek(α, x)). (4.7)

Here

Ek(α, x) :=√(εk − α)(εk − α + 2xλk).

Since pB
0 (β,α, x) is a convex function of α ≤ 0, it can be expressed as the (inverse)

Legendre-Fenchel transform of the convex function (4.6):

pB
0 (β,α, x) = sup

y≥0

{

α(y + x) − f B
0 (β, y, x)

}

.

Combination of the last identity with the result of Proposition 2.2 implies that

pSB (β,μ)

= sup
x≥0

{

inf
α≤0

{

sup
y≥0

{

α(y + x) − f B
0 (β, y, x) + (μ − α)2

2λ

}}}

. (4.8)

In general, a supremum and an infimum do not commute, i.e. we can not exchange in-
fimum over α ≤ 0 and supremum over y ≥ 0. But in this particular case, this is however
possible. Indeed, for any fixed x ≥ 0 the function

� (y,α) := α(y + x) − f B
0 (β, y, x) + (μ − α)2

2λ
(4.9)

is a strictly concave for y ≥ 0 and strictly convex as the function of α ≤ 0. Therefore, the
stationary (saddle) point (ỹ, α̃) of the function (4.9) is unique and it is solution of equations:

∂y� (y,α) = 0 and ∂α� (y,α) = y + x + α − μ

λ
= 0.

In particular, this allows to commute the infimum over α ≤ 0 and the supremum over y ≥ 0
in (4.8) to obtain

pSB (β,μ) = sup
(x,y)∈R

2+

{

μ(y + x) − f B
0 (β, y, x) − λ

2
(y + x)2

}

, (4.10)

which implies the rate function Kμ(x, y) ≥ 0, cf. (4.5). Moreover, due to (4.6) and to the
explicit expression (4.7), one finds that for any λ > 0 there are strictly positive constants
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M,B > 0 such that solutions (xμ, yμ) of the variational problem (4.10) are localized in a
finite domain: DM := {|cμ|2 := xμ < M,yμ < M}, whereas for any (|c|2 = x, y) ∈ Dc

M :=
{C × R+} \ DM we have the estimate:

μ(y + x) − f B
0 (β, y, x) − λ

2
(y + x)2 ≤ −B (y + x) . (4.11)

The latter implies that for these values of arguments the rate function can be estimated from
below by

Kμ (x, y) > pSB (β,μ) + B (y + x) . (4.12)

After these preliminaries we are in position to check the LDP for the sequence of distri-
butions {K�,μ}�, see Appendix for basic notations and definitions.

By virtue of (4.6), (4.7) and (4.10) it gets evident that the rate function Kμ(x, y) is not
identical to ∞ and that it has compact level sets, i.e. for each m < ∞, the subset {(x, y) :
Kμ(x, y) ≤ m} is compact (LD1).

Consider now K�,μ on any closed set C := C0 × C1 of C × R+. By (4.2), (4.10) and (4.12)
we obtain the estimate:

K�,μ [C0 × C1] ≤ eβV
{

sup
{C0×C1}∩DM

{

μ(y + |c|2) − f SB
� (β, y, c)

}− pSB
� (β,μ)

}

×
∫

{C0×C1}∩DM

d2c ν� (dy)

+
∫

{C0×C1}∩Dc
M

d2c ν� (dy) e−βV {B(x+y)+pSB
� (β,μ)}. (4.13)

Now definitions (4.2) and (4.10) combined with Lemma 5.2 imply:

lim sup
�

1

βV
ln K�,μ [C0 × C1] ≤ − inf

C0×C1
Kμ

(|c|2, y) ,

which is equivalent to the large deviations upper bound (5.11) for distributions K�,μ for the
sequence βV with the rate function Kμ (LD2).

It remains to establish the corresponding large deviation lower bound (5.12). Let G :=
G0 × G1 be an arbitrary open subset of C × R+ and take a point (ĉ, ŷ) ∈ G0 × G1. Denote by
Gδ(ĉ, ŷ) a δ-vicinity of the point (ĉ, ŷ) such that Gδ(ĉ, ŷ) = G0,δ(ĉ) × G1,δ(ŷ) ⊂ G . Then one
obviously has:

K�,μ[G] ≥ K�,μ[Gδ(ĉ, ŷ)]

≥ e−βVpSB
� (β,μ)e

βV [infGδ (ĉ,ŷ){μ(y+|c|2)−f SB
� (β,y,c)}]

∫

G0,δ (ĉ)

d2c

∫

G1,δ (ŷ)

ν� (dy) . (4.14)

Since inequality (4.14) holds for each point (ĉ, ŷ) of G , by virtue of Lemma 5.2 and by
continuity of functions {μ(y + |c|2) − f SB

� (β, y, c)} in variables c, y for any large βV , this
implies:

lim inf
�

1

βV
ln K�,μ [G] ≥ − inf

G0×G1
Kμ

(|c|2, y) ,

i.e. the corresponding large deviation lower bound (5.12) for K�,μ holds for the sequence
βV with the rate function Kμ (LD3). �
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By Theorem 4.2 we can then deduce the convergence of the distribution K�,μ as � ↑ R
3

for μ �= μc:

Corollary 4.3 (Limit of Distributions K�,μ �=μc ) The sequence of generalized Kac distrib-
utions {K�,μ}� verifies the LDP and converges weakly on the set of probability measures
M1(C × R+) to the product of atomic and of degenerate singular measure on the circle

Kμ

[

dc1dc2 × dy
]

= lim
�

K�,μ

[

dc1dc2 × dy
]

=
∫ 2π

0

dθ

2π
δ(c1 − √

xμ cos θ)δ(c2 − √
xμ sin θ)dc1dc2δ(y − yμ)dy, (4.15)

for μ > μc whereas for μ < μc , i.e. xμ<μc = 0,

Kμ<μc

[

dc1dc2 × dy
]= δ(c1)δ(c2)dc1dc2δ(y − yμ)dy. (4.16)

Proof By virtue of the LDP (Theorem 4.2), if lim� K�,μ[·] = Kμ[·] exists, the support of the
limit Kac measure suppKμ is contained in the set {(x, y) : Kμ(x, y) = 0}. However, if this
support consists of more than one point the Helly selection principle guarantees that {K�,μ}�

contains subsequences converging to atomic measures with supports in these points. By
[9] the variational problem (4.10) has for any μ �= μc a unique solution (xμ = |cμ|2, yμ) ∈
supp Kμ. Notice that in contrast to atomic measure with support at y = yμ the condition xμ =
|cμ|2 defines in the complex plane C a two-dimensional degenerate probability measure on
the circle {c ∈ C : |c| = |cμ| = √

xμ}. Hence, we obtain (4.15). Since there is no zero-mode
condensation for μ < μc , i.e. xμ<μc = 0, the measure (4.15) reduces in this case to the
product of atomic measures (4.16). �

If ρ+ > ρ−, then at the critical point μ = μc the variational problem (4.10) has two
solutions: (0, yμc−0 = ρ−) and (xμc+0, yμc+0), where yμc+0 = ρ+ − xμc+0, see [9] and [11].
We analyze this special case in our next theorem.

Theorem 4.4 (Generalized Kac distribution at the critical point) Let β > 0, i.e. ρ+ > ρ−.
Then for μ̃c(�) defined by (4.1) the Kac distributions {K�,μ̃c(�)}� converge weakly in
M1(C × R+) to the family of linear convex combinations of two limit Kac distributions:

Kμc,γ

[

dc1dc2 × dy
] = lim

�
K�,μ̃c(�)

[

dc1dc2 × dy
]

= ξγ Kμc−0

[

dc1dc2 × dy
]+ (1 − ξγ )Kμc+0

[

dc1dc2 × dy
]

, (4.17)

with coefficients ξγ := (1 + eγ (ρ+−ρ−))−1 ∈ (0,1), for γ ∈ R. Here

Kμc−0
[

dc1dc2 × dy
] := δ(c1)δ(c2)dc1dc2 δ(y − yμc−0)dy (4.18)

and

Kμc+0

[

dc1dc2 × dy
]

:=
∫ 2π

0

dθ

2π
δ(c1 − √

xμc+0 cos θ)δ(c2 − √
xμc+0 sin θ)dc1dc2 δ(y − yμc+0)dy (4.19)
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correspond to extreme points ρ− and ρ+. Varying γ from −∞ to +∞, one scans over
mixture of coexisting extreme Gibbs states 〈−〉ρ∓(β,μc):

〈−〉ρ(γ )(β,μc) = ξγ 〈−〉ρ−(β,μc) + (1 − ξγ )〈−〉ρ+(β,μc) (4.20)

with the total particle density ρ(γ ) = ξγ ρ− + (1 − ξγ )ρ+ ∈ [ρ−, ρ+].

Proof Since for ρ+ > ρ− the rate function Kμc (x, y) has two degenerate distinct minima at
the points (0, ρ−) and (xρ+ := xμc+0, yρ+ := yμc+0), we take ε ∈ (0, xρ+) ∩ (0, yρ+ − ρ−)

and define in R
2+ two subsets:

A− := {c ∈ C : |c|2 ∈ (0, xρ+ − ε]} × (ρ−, yρ+ − ε]
and

A+ := {c ∈ C : |c|2 ∈ (xρ+ − ε,+∞)} × (yρ+ − ε,+∞).

By Kμ−
c

and Kμ+
c

we define the restrictions of Kμc onto A− and A+. Now we see that
Kμ−

c
and Kμ+

c
have both unique minimizers, respectively at (0, ρ−) and at (xρ+ , yρ+). Let us

define on R
2+ two probability measures:

L
−
�[A] := K�,μc [A ∩ A−]

K�,μc [A−] and L
+
�[A] := K�,μc [A ∩ A+]

K�,μc [A+] ,

which satisfy the LDP respectively with rate functions Kμ−
c

and Kμ+
c

. Take a positive con-
tinuous function ϕ(c, y) : C × R+ �→ R+ and remark that

∫

R
2+

ϕ (c, y)K�,μ̃c(�)

[

dc1dc2 × dy
]

=
∫

C
d2c
∫

R+ ν�(dy)ϕ(c, y)eβV (μ̃c(y+|c|2)−f SB
� (β,y,c))

∫

C
d2c
∫

R+ ν�(dy)eβV (μ̃c(�)(y+|c|2)−f SB
� (β,y,c))

= �−
� + �+

�,

where

�−
� :=

∫

A− ϕ(c, y)e{γ+o(1)}(y+|c|2)
L

−
�[dc1dc2 × dy]

∫

A− e{γ+o(1)}(y+|c|2)L
−
�[dc1dc2 × dy] + ��

∫

A+ e{γ+o(1)}(y+|c|2)L
+
�[dc1dc2 × dy] ,

�+
� :=

∫

A+ ϕ(c, y)e{γ+o(1)}(y+|c|2)
L

+
�[dc1dc2 × dy]

�−1
�

∫

A− e{γ+o(1)}(y+|c|2)L
−
�[dc1dc2 × dy] + ∫A+ e{γ+o(1)}(y+|c|2)L

+
�[dc1dc2 × dy] ,

and

�� :=
∫

A+ d2c ν�(dy)eβV {μc(y+|c|2)−f SB
� (β,y,c)}

∫

A− d2c ν�(dy)eβV {μc(y+|c|2)−f SB
� (β,y,c)} . (4.21)

By Lemma 5.2 the sequence {μc(y +|c|2)−f SB
� (β, y, c)}� converges in the thermodynamic

limit to the function

μc(y + |c|2) − f B
0

(

β,y, |c|2)− λ

2

(

y + |c|2)2 ,
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which has degenerate suprema at (0, ρ−) and (eiθxρ+ , yρ+) for any θ ∈ [0,2π]. Conse-
quently, in the thermodynamic limit we obtain for coefficient (4.21): lim� �� = 1. Since
ρ+ = yρ+ + xρ+ , then by the LDP for the measures L

∓
� one gets that

lim
�

�−
� = ξγ ϕ(0, ρ−) and lim

�
�+

� = (1 − ξγ )

∫ 2π

0

dθ

2π
ϕ(

√
xρ+eiθ , yρ+).

Applying these results to the function ϕ(c, y) = e−t (c+y) with t > 0, by bijectivity of the
probability measures and its Laplace transformation, one concludes that Kac distributions
{K�,μ̃c(�)}� converge weakly on the set of measures M1(C × R+) to (4.17).

Notice that the function ξγ : R → (0,1) is strictly decreasing. Therefore, by integrating
ϕ(c, y) = |c|2 +y with the measures K�,μ̃c(�) we obtain that the particle density in the Gibbs
state (4.20) can converge to any fixed density in the open set (ρ−, ρ+):

lim
�

〈

N�

V

〉

H SB
�,λ

(β, μ̃c(�)) = ξγ ρ− + (1 − ξγ

)

ρ+, (4.22)

and

ρ∓ = lim
γ→∓∞

{

ξγ ρ− + (1 − ξγ )ρ+
}

. (4.23)

In particular, one obtains these results if in (4.1) we put the coefficient γ = γ� = ∓o(V ) . �

4.2 Generalized Kac Distribution and Particle Density Parameter

Here we give some additional comments about the concept of the total particle density as a
parameter that defines the grand-canonical ensemble. Theorem 3.1 and Theorem 3.2 are di-
rect consequences respectively of Theorem 4.2 and Corollary 4.3 for the chemical potential
μρ defined as the thermodynamic limit of μ�(β,ρ) (2.13). The only remaining question is
to study the case of fixed particle densities at the point of phase transition, i.e. in domain:
ρ ∈ (ρ−, ρ+) for ρ+ > ρ−. From (4.22), we obtain that

lim
�

〈

N�

V

〉

H SB
�,λ

(β, μ̃c(�)) = ρ ∈ (ρ−, ρ+) ,

for chemical potentials:

μ̃c(�) = μc(β) + γρ

βV
+ o

(

1

βV

)

with γρ := 1

ρ+ − ρ−
ln

(

ρ − ρ−
ρ+ − ρ

)

, (4.24)

cf. (4.1). Therefore,

μ�(β,ρ) = μc(β) + γρ

βV
+ o

(

1

βV

)

.

In particular, from Theorem 4.4 with γ = γρ we get Theorem 3.3 for ρ ∈ (ρ−, ρ+). Recall
also (4.23). In other words, if ρ = ρ− then γρ < 0 (|γρ | = o(V )) would diverge to −∞,
whereas if ρ = ρ+ then γρ = o(V ) → +∞. It follows that Theorem 3.3 is proven for any
ρ ∈ [ρ−, ρ+].
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Appendix

In this appendix, we first establish some auxiliary results that we need for the proof of
Theorems 4.2 and 4.4. Next, for the reader convenience, we shortly recall some basic notions
of Large Deviation Principle (LDP).

Some Technical Statements and Proofs

The thermodynamic limit of pSB
� (β,μ, c) (3.4) is first analyzed in order to obtain next the

one of the free-energy density f SB
� (β, y, c) (4.4), which is given in Lemma 5.2.

Lemma 5.1 (Thermodynamic limit of the pressure pSB
� (β,μ, c)) For any c ∈ C, μ ∈ R and

β > 0, the pressure pSB
� (β,μ, c) converges towards

pSB(β,μ, c) := lim
�

pSB
� (β,μ, c) = inf

α≤0

{

pB
0 (β,α, x) + (μ − α)2

2λ

}

.

Here x = |c|2 ≥ 0 and recall that pB
0 (β,α, x) is defined in (2.8), cf. also (4.7).

Proof The proof is obtained by a comparison between suitable lower and upper bounds for
pSB

� (β,μ, c). We start by the lower bound. By taking any orthonormal basis {〈ψ ′
n|}∞

n=1 of F ′
�,

TrF ′
�

{

W�,μ (c)
}=

∞
∑

n=1

〈

c ⊗ ψ ′
n

∣

∣ e
−β(H SB

�,λ−μN�)
∣

∣c ⊗ ψ ′
n

〉

,

and so, by the Peierls-Bogoliubov inequality we get

TrF ′
�

{

W�,μ (c)
} ≥ sup

{ψ ′
n}∞

n=1

{ ∞
∑

n=1

e
−β〈c⊗ψ ′

n|H SB
�,λ−μN�|c⊗ψ ′

n〉
}

= TrF ′
�

{

e
−βH SB

�,λ(c,μ)
}

, (5.1)

see e.g. [17, 18], where H SB
�,λ(c,μ) results from the Bogoliubov approximation (3.1) of

{H SB
�,λ − μN�}. From [9] we already know that

lim
�

1

βV
ln TrF ′

�

{

e
−βH SB

�,λ(c,μ)
}

= inf
α≤0

{

pB
0 (β,α, |c|2) + (μ − α)2

2λ

}

. (5.2)

Consequently, the inequality (5.1) implies in the thermodynamic limit the lower bound

pSB(β,μ, c) ≥ inf
α≤0

{

pB
0 (β,α, |c|2) + (μ − α)2

2λ

}

, (5.3)
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for any c ∈ C, μ ∈ R and β > 0.
To obtain an upper bound on pSB(β,μ, c), we follow the idea of [16], and use the coher-

ent state representation of {H SB
�,λ − μN�} given by

H SB
�,λ − μN� =

∫

C

d2c
{

Ĥ SB
�,λ (c,μ) |c〉 〈c|

}

,

where the Hamiltonian Ĥ SB
�,λ(c,μ) is defined on F ′

� by

Ĥ SB
�,λ (c,μ) := H SB

�,λ (c,μ) + �,

with

� := μ − 2λ|c|2 + λ

V
− 1

V

∑

k∈�∗\{0}
(λ + λk) a∗

k ak. (5.4)

Actually, Ĥ SB
�,λ(c,μ) is derived by replacing the operators a∗

0a0, a0a0, a∗
0a

∗
0 , and a∗

0a
∗
0a0a0

in {H SB
�,λ − μN�} respectively by |V c|2 − 1, V c2, V c̄2 and V 2|c|4 − 4V |c|2 + 2. Let

{〈ψ ′
n(c)|}∞

n=1 be an orthonormal basis of eigenvectors of Ĥ SB
�,λ(c,μ). Since for any z, c ∈ C

〈z|c〉 = e− 1
2 {(z̄−c̄)(z−c)+c̄z−z̄c},

it follows that

TrF ′
�

{

W�,μ(c)
} =

∞
∑

n=1

〈c ⊗ ψ ′
n(c)|e−β

∫

C
d2zĤ SB

�,λ(z,μ)|z〉〈z||c ⊗ ψ ′
n(c)〉

=
∞
∑

n=1

{

1 +
∞
∑

m=1

(−β)m

m!
∫

Cm

d2z1 · · ·d2zm

× e− V
2 {Rm(z1,...,zm)+iIm(z1,...,zm)}

×
m
∏

j=1

〈ψ ′
n(c)|Ĥ SB

�,λ(zj ,μ)|ψ ′
n(c)〉
}

, (5.5)

with the two real-valued functions Rm and Im of (z1, . . . , zm) ∈ C
m defined by

Rm (z1, . . . , zm) := |z1 − c|2 +
m
∑

j=1

∣

∣zj−1 − zj

∣

∣

2 + |zm − c|2 ,

Im (z1, . . . , zm) := i (z̄1c − c̄z1) + i

m
∑

j=1

(

z̄j zj−1 − z̄j−1zj

)+ i (c̄zm − z̄mc) .

Since Im(c, . . . , c) = 0 and

inf
(z1,...,zm)∈Cm

Rm(z1, . . . , zm) = Rm(c, . . . , c) = 0,

by virtue of (5.5) combined with large deviations arguments, one can obtain in the thermo-
dynamic limit that

pSB(β,μ, c) = lim
�

1

βV
ln TrF ′

�

{

e
−βĤ SB

�,λ(c,μ)
}

. (5.6)
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Justification of the LD technique in sums (5.5) is based on the Lebesgue domination theorem
and it follows the line of reasoning developed in [16]. Meanwhile, by using the Bogoliubov
convexity inequality [6] it follows that

TrF ′
�

{

e
−βĤ SB

�,λ(c,μ)
}

≤ 1

βV
ln TrF ′

�

{

e
−βH SB

�,λ(c,μ)
}

− 1

V
〈�〉Ĥ SB

�,λ(c,μ) , (5.7)

where

〈−〉Ĥ SB
�,λ(c,μ) := TrF ′

�
{−e

−βĤ SB
�,λ(c,μ)}

TrF ′
�
{e−βĤ SB

�,λ(c,μ)}
.

In particular, since by our assumption (B) on the interaction potential one has: 0 ≤ λk ≤ λ0

for k ∈ R
3, the inequality (5.7) together with (5.4) yields

1

βV
ln TrF ′

�

{

e
−βĤ SB

�,λ(c,μ)
}

≤ 1

βV
ln TrF ′

�

{

e
−βH SB

�,λ(c,μ)
}

+ 2|c|2λ − μ

V
− λ

V 2
+ λ + λ0

V 2

∑

k∈�∗\{0}

〈

a∗
k ak

〉

Ĥ SB
�,λ(c,μ)

. (5.8)

The last term can be explicitly computed. We omit the details. In fact, for any μ ∈ R one
can check that

1

V

∑

k∈�∗\{0}

〈

a∗
k ak

〉

Ĥ SB
�,λ(c,μ)

= O(1) as � ↑ R
3.

Therefore, from (5.8) together with (5.2) and (5.6) one deduces that

pSB(β,μ, c) ≤ inf
α≤0

{

pB
0 (β,α, |c|2) + (μ − α)2

2λ

}

.

Together with the lower bound (5.3), this inequality proves the lemma. �

Lemma 5.2 (Thermodynamic limit of f SB
� (β, y, c)) For any c ∈ C, y ≥ 0 and β > 0, the

thermodynamic limit f SB(β, y, c) of the free-energy density f SB
� (β, y, c) (4.4) equals

f SB(β, y, c) := lim
�

f SB
� (β, y, c) = f B

0 (β, y, x) + λ

2
(y + x)2, (5.9)

with x = |c|2 ≥ 0, and f B
0 (β, y, x) defined as the Legendre-Fenchel transform of pB

0 (β,α, x)

(2.8), cf. Theorem 4.2.

Proof The pressure pSB
� (β,μ, c) (3.4) can be rewritten as

pSB
� (β,μ, c) = 1

βV
ln
∫

R+
eβV (μy−f SB

� (β,y,c))ν�(dy) + μ|c|2,

with ν�(dy) defined in (4.3). It is then straightforward to check that the thermodynamic
limit pSB(β,μ, c) of pSB

� (β,μ, c) (3.4) equals

pSB(β,μ, c) = sup
y≥0

{

μy − f SB (β, y, c)
}+ μ|c|2,
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with f SB(β, y, c) < ∞ for y ≥ 0. The derivative of the pressure pSB(β,μ, c) is continuous
as a function of μ, cf. Lemma 5.1 and (4.7). Thus, by using the Tauberien theorem proven in
[19], the existence of pSB(β,μ, c) already implies the convexity of f SB(β, y, c) as a function
of y ≥ 0. In particular, it yields that

f SB (β, y, c) = sup
μ∈R

{

μ(y + |c|2) − pSB(β,μ, c)
}

for y ≥ 0. (5.10)

By using the explicit form of pSB(β,μ, c), given by Lemma 5.1, a straightforward compu-
tation then gives:

f SB (β, y, c) = sup
α≤0

{

α(y + |c|2) − pB
0 (β,α, |c|2)}+ λ

2
(y + x)2 ,

which proves the assertion (5.9). �

Large Deviation Principle (LDP)

Let X denote a complete separable metric vector space. A lower semi-continuous function
I : X → [0,∞] is called a rate function, if I is not identical ∞ and has compact level sets, i.e.
if I−1([0,m]) = {x ∈ X : I(x) ≤ m} is compact for any m ≥ 0 (LD1). A sequence {Xl}∞

l=1 of
X -valued random variables Xl or the corresponding sequence {Pl}∞

l=1 of probability mea-
sures on the Borel subsets of X satisfy the large deviations upper bound (LD2) for the
sequence al and rate function I if, for any closed subset C of X ,

lim sup
l→∞

1

al

ln Pl (Xl ∈ C) = lim sup
l→∞

1

al

ln Pl (C) ≤ − inf
C

I(x), (5.11)

and they satisfy the large deviations lower bound (LD3) if, for any open subset G of X ,

lim inf
l→∞

1

al

ln Pl (Xl ∈ G) = lim inf
l→∞

1

al

ln Pl (G) ≥ − inf
G

I(x). (5.12)

If both, upper and lower bound, are satisfied, one says that {Xl}∞
l=1 or {Pl}∞

l=1 satisfy a Large
Deviation Principle (LDP). The LDP is called weak, if the upper bound in (5.11) holds only
for compact sets C . This notion easily extends to the situation where the distribution of Xl

is not normalized, but a sub-probability distribution only. Observe also that one of the most
important conclusions from a LDP is the Varadhan lemma, which says that, for any bounded
and continuous function ϕ : X → R,

lim
l→∞

1

al

ln
∫

exp(alϕ (Xl))dP = − inf
x∈X

{I (x) − ϕ (x)} .

For the main results and a comprehensive treatment of the theory of large deviations, see
e.g. [20].
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